Informal Introduction to Spectral Risk Measures

Stephen J. Mildenhall May 2018

Don said "Risk Measure = Expression of Risk Preference"

...but what is a Risk Preference?

Risk Preferences

Rational actors

Prefer more to less

Risk Preferences

Rational actors

- Prefer more to less
- Prefer certainty to uncertainty

Prefer More To Less

Sounds simple, but

Prefer More To Less

Sounds simple, but

- Diminishing marginal utility
- Preference relative to a wealth level
- Not well suited to corporations

Prefer Certainty to Uncertainty

Risk multifaceted

- Process
- Parameter
- Uncertainty
- Ambiguity
- Pure
- Speculative

Prefer Certainty to Uncertainty

Risk multifaceted

- Process
- Parameter
- Uncertainty
- Ambiguity
- Pure
- Speculative
- Modeling assets: large positive good
- Modeling losses: large positive bad

Risk Measure ρ Quantifies Risk Preferences

Prefer
$$X$$
 to $Y \iff \rho(X) \leq \rho(Y)$

- Simple
- Consistent
- Applies to pricing
- Applies to risk capital

Insured with risk X

Intermediary Insurer

- Regulator risk measure determines and enforces adequate risk bearing capacity A, e.g. with TVaR
- Market risk measure determines split of A into premium and equity

The Thin Layer Trick

Simplifying idea

- Break pricing problem into sub-problems of pricing thin layers
- Add!

Simplifying idea

- Break pricing problem into sub-problems of pricing thin layers
- Add!

Why simplifying?

- Thin layers only have total losses, no partial losses
- Risk of thin layer completely described by one number, called
 - Exceedance probability (EP) S, or
 - Probability of attachment, or
 - Expected loss (EL)

Linking risk and price

- Price of thin layer also described by one number, called
 - Rate-on-line (ROL), or
 - Risk adjusted or distorted probability, or
 - State-price

Linking risk and price

- Price of thin layer also described by one number, called
 - Rate-on-line (ROL), or
 - Risk adjusted or distorted probability, or
 - State-price
- Distortion function g: thin layer risk → price captures relationship between risk and price
 - g is a function $[0,1] \rightarrow [0,1]$
 - $\qquad \text{Risk averse implies } g(s) \geq s \text{ for all } s \in [0,1]$

Distortion Function to Risk Measure

- Associate a **risk measure** ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$\mathsf{E}(X) = \int_0^\infty S(x) dx$$
$$= \int_0^\infty x f(x) dx$$
$$= \int_0^1 F^{-1}(p) dp$$

Distortion Function to Risk Measure

- Associate a **risk measure** ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$\begin{split} \mathsf{E}(X) &= \int_0^\infty S(x) dx & \rho_g(X) &= \int_0^\infty g(S(x)) dx \\ &= \int_0^\infty x f(x) dx &= \int_0^\infty x g'(S(x)) f(x) dx \\ &= \int_0^1 F^{-1}(p) dp &= \int_0^1 \mathsf{VaR}_p(X) g'(1-p) dp \end{split}$$

Distortion Function to Risk Measure

- Associate a **risk measure** ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$\begin{split} \mathsf{E}(X) &= \int_0^\infty S(x) dx & \rho_g(X) &= \int_0^\infty g(S(x)) dx \\ &= \int_0^\infty x f(x) dx &= \int_0^\infty x g'(S(x)) f(x) dx \\ &= \int_0^1 F^{-1}(p) dp &= \int_0^1 \mathsf{VaR}_p(X) g'(1-p) dp \end{split}$$

- Function g' on lower right measures care/care-more along the risk spectrum p, hence spectral risk measure
- $\mathsf{E}(X)$ corresponds to ρ_g with g(s)=s the identity

Total Risk: Summing Over Thin Layers Using g(S(x))

Relationship Between Risk and Price

Risk: Entropy or Standard Deviation?

Risk Measure: Encompasses Volume and Volatility

Thin Layer: Probability of Loss=EL and Risk=Price=ROL

Empirical Data Guides Choice of Pricing Function

Restrictions on Possible Distortion / Pricing Functions

Restrictions on Pricing Functions: $0 \mapsto 0$, $1 \mapsto 1$

Restriction: Increasing ← Monotone

Restriction: Concave ← Subadditive

Four Restrictions Leave Great Flexibility

And With Great Flexibility, Comes Great Responsibility

John, over to you...